Iron fortification of rice seeds through activation of the nicotianamine synthase gene.

نویسندگان

  • Sichul Lee
  • Un Sil Jeon
  • Seung Jin Lee
  • Yoon-Keun Kim
  • Daniel Pergament Persson
  • Søren Husted
  • Jan K Schjørring
  • Yusuke Kakei
  • Hiroshi Masuda
  • Naoko K Nishizawa
  • Gynheung An
چکیده

The most widespread dietary problem in the world is mineral deficiency. We used the nicotianamine synthase (NAS) gene to increase mineral contents in rice grains. Nicotianamine (NA) is a chelator of metals and a key component of metal homeostasis. We isolated activation-tagged mutant lines in which expression of a rice NAS gene, OsNAS3, was increased by introducing 35S enhancer elements. Shoots and roots of the OsNAS3 activation-tagged plants (OsNAS3-D1) accumulated more Fe and Zn. Seeds from our OsNAS3-D1 plants grown on a paddy field contained elevated amounts of Fe (2.9-fold), Zn (2.2-fold), and Cu (1.7-fold). The NA level was increased 9.6-fold in OsNAS3-D1 seeds. Analysis by size exclusion chromatography coupled with inductively coupled plasma mass spectroscopy showed that WT and OsNAS3-D1 seeds contained equal amounts of Fe bound to IP6, whereas OsNAS3-D1 had 7-fold more Fe bound to a low molecular mass, which was likely NA. Furthermore, this activation led to increased tolerance to Fe and Zn deficiencies and to excess metal (Zn, Cu, and Ni) toxicities. In contrast, disruption of OsNAS3 caused an opposite phenotype. To test the bioavailability of Fe, we fed anemic mice with either engineered or WT seeds for 4 weeks and measured their concentrations of hemoglobin and hematocrit. Mice fed with engineered seeds recovered to normal levels of hemoglobin and hematocrit within 2 weeks, whereas those that ate WT seeds remained anemic. Our results suggest that an increase in bioavailable mineral content in rice grains can be achieved by enhancing NAS expression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iron Biofortification of Myanmar Rice

Iron (Fe) deficiency elevates human mortality rates, especially in developing countries. In Myanmar, the prevalence of Fe-deficient anemia in children and pregnant women are 75 and 71%, respectively. Myanmar people have one of the highest per capita rice consumption rates globally. Consequently, production of Fe-biofortified rice would likely contribute to solving the Fe-deficiency problem in t...

متن کامل

Iron-biofortification in rice by the introduction of three barley genes participated in mugineic acid biosynthesis with soybean ferritin gene

Iron deficiency is a serious problem around the world, especially in developing countries. The production of iron-biofortified rice will help ameliorate this problem. Previously, expression of the iron storage protein, ferritin, in rice using an endosperm-specific promoter resulted in a two-fold increase in iron concentration in the resultant transgenic seeds. However, further over expression o...

متن کامل

Molecular Mechanism of Mugineic Acid Family Phytosiderophores Secretion

Iron (Fe) is essential for all living organisms, including humans and plants. To acquire Fe in the soil, graminaceous plants produce and secrete mugineic acid family phytosiderophores (MAs) from their roots. MAs chelate and solubilize insoluble Fe hydroxide in the soil. Subsequently, plants take up Fe-MAs complexes through specific transporters on the root cell membrane. MAs and nicotianamine (...

متن کامل

Enhanced Grain Iron Levels in Rice Expressing an IRON-REGULATED METAL TRANSPORTER, NICOTIANAMINE SYNTHASE, and FERRITIN Gene Cassette

Micronutrient malnutrition is widespread, especially in poor populations across the globe, and iron deficiency anemia is one of the most prevalent forms of micronutrient deficiencies. Iron deficiency anemia has severe consequences for human health, working ability, and quality of life. Several interventions including iron supplementation and food fortification have been attempted and met with v...

متن کامل

Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition

To address the problem of iron-deficiency anemia, one of the most prevalent human micronutrient deficiencies globally, iron-biofortified rice was produced using three transgenic approaches: by enhancing iron storage in grains via expression of the iron storage protein ferritin using endosperm-specific promoters, enhancing iron translocation through overproduction of the natural metal chelator n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 51  شماره 

صفحات  -

تاریخ انتشار 2009